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The self-similar problem of the inclined entry of a thin wedge into a half-space filled with an ideal 

incompressible fluid is considered in a linear formulation. The different modes of fluid motion whose 

existence has been previously demonstrated [l] are investigated. A criterion for non-separated flow is 

obtained in the form of a relation between three angles, defining the angle of the wedge, the direction 

of the entry velocity and the angle of attack. If this relation is not satisfied, modes of motion are 

possible in which a cavity is adjacent to one of the faces of the wedge. If the pressure in the cavity is less 

than the pressure at the surface of the fluid half-space, then only two of these modes exist and both 

faces are always wetted by the fluid, even in the case when the angle of the wedge is zero. If the 

pressure in the cavity is equal to the pressure at the surface of the half-space, another mode of motion 

exists: one of the faces of the wedge is not wetted by the fluid. A criterion is obtained for the transition 

from this mode to the mode with a cavity. The dependence of the size of the cavity and the force acting 

on the faces of the wedge on the parameters of the problem is investigated numerically. 

1. We consider the self-similar problem of the entry of a thin rigid. wedge at constant velocity U 
into an ideal incompressible weightless fluid half-space Y 6 0, --oo < X < ~0. The simplest linear 
approximation [2] is used, which enables us to carry out the investigation for all parameter 
values admissible for a thin wedge. It has been shown (11 that there are three types of fluid 
motion. One of them is non-separated flow. The other two are separated, the streams separat- 
ing at the edge of the wedge C (Fig. 1). One of the faces of the wedge may turn out to be 
unwetted by the fluid. This is the case when a plate enters the fluid. The third type is associated 
with the formation of a cavity CD on one of the faces. To fix our ideas, we shall assume that the 
cavity is attached to the left face CB. Three angles p, a, and a, define the direction of the 
velocity U, the spatial orientation and the angle a = a, + a, of the wedge (Fig. 1). For the case 
of the fluid motion with a cavity there is yet another parameter p,,, the difference between the 
pressure at the free boundary of the half-space and’the pressure in the cavity. Which of the 
three types of fluid motion occurs depends on the relations between these parameters. It is 
always assumed that p,, 2 0, a, 3 0. Without loss of generality we can assume the pressure in 
the cavity to be zero. 

It is convenient to introduce dimensionless self-similar coordinates x = Xl(U), y = Y /(I%), 
pressure p = P/(p,U’), and mass velocity v = V/U, where p,, is the density and t is the time, 
together with the complex coordinate z = x + iy and the complex velocity V = v, -iv,. 

The pressure can be written in the form 

p = Rep(z) 

P(z)= zV(z)- i V(rM+(z)(2+p, 
-0D 

(l-1) 

tPrik1. Mot. Mekh. Vol. 58, No. 3, pp. 113-118, 1994. 
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Fig. 1. Fig. 2. 

By a thin wedge we not only mean that the angle of the wedge a is small, but also that a, and 
a, are small. Then the perturbation of the fluid will also be small: u%l. The approximation 
associated with the smallness of a, and a2 is as follows. The boundary conditions relate to 
the x axis and the section of the line OC, and the term 112 I V(z) I2 in (1.1) is neglected. At the 
boundary of the half-space we have p=po. It follows from (1.1) that this is equivalent to 
the condition u,(x, 0) = 0. If we denote the radius-vector of points of the line OC by r, then the 
pressure along this line is given by 

p(r)=u,r- ju,(r)dr+p0 (r=Irl, u, =F’(v,r)) 
0 

(1.2) 

At the boundary of the cavity CD the condition p=O is satisfied. From this condition and 
from (1.2) it follows that u, = U, = const on CD. Along the parts AC and BD of the faces of the 
wedge the impermeability condition must be satisfied. 

2 The fluid flow domain can be conformally mapped into the upper half-plane Imw >O, 
w = u + iU. This mapping has the form 

UC=-26, 6=pllr, -M<s<x, zc=-i,ins 

f(w)=(l-,)W+s(l+w)K-s argf(O)=O , 

Cuts for the function f(w) are chosen in the lower half-plane Imw < 0. The points A, C, B 
and D become points on the real axis Imw =0: u= -1, u=z+., u=z%,, u = 1, respectively 
(Fig. 2). 

The size of the cavity is given by the formula 

&uo > =I z(u, ) - z&l )I = 1 - f&J ) 1 f(u, ) 
u,~uoS1, 041s1, 1(1)=1, I(u,)=O 

Thus the problem under consideration reduces to finding a function V(w). analytic in the 
upper half-plant Imw > 0, and satisfying the conditions 

Re V = 0, Id> 1; Re(z,V) = uo, u, < u < u. (2.1) 

Im(z,V) = 1 --al, -l<u<u, 

a2- uo<u<u<l 
(2.2) 
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F(u,,) I u. - 7 Re[V(u)z’(u)ldu = -PO (2.3) 
-1 

The first condition of (2.1) means that the pressure along the free boundary y = 0 is constant, 
and the second condition is the condition for the pressure along the free surface of the cavity to 
be constant. Condition (2.2) is the impermeability condition on the faces of the wedge. 
Condition (2.3) means that the pressure at the boundary of the cavity is zero. It is also 
necessary to require the function V(z) to decrease faster than l/z as z + 00, and then p(z) + p0 
as z+m. 

A function V(w) satisfying conditions (2.1) and (2.2) is sought in the form 

V(w) = q(w)_?_ e (2.4) 

where q(w) is the solution of the problem under consideration, but with homogeneous 
conditions, i.e. with conditions (2.1) and (2.2) in which U, = CL, = 01, = 0. Choosing some 
function q(w), one can select a function g(u) so that conditions (2.1) and (2.2) are satisfied. It 
can be shown that the general solution of the problem can be represented in the form of the 
sum of a completely defined solution of the inhomogeneous equation (in (2.4) we choose a 
given function cp(w) = q,,(w)) and the general solution of the homogeneous equation v(w). The 
latter is a linear combination with real coefficients of the functions 

i(W - l)-s+q (W + 2)6+q (W - *J+v- U.J@-x 

Here 4, q, n,, n, are arbitrary integers, 
For the complex velocity one obtains 

V(w) cpo(w) =-~a,Z(u,,l)-alZ(-l,~,)-~oZ(~,~~o)l+cp(w) 
It 

From the requirements that V(w) + 0 as w + 00, and that the energy, fluid energy flux, and 
the forces acting on the wedge faces are finite, it follows that 

ml =m2 =nc =n, =o, cpw=c~,(w(w-uo) 

where C is a real constant. 
If one chooses a neighbourhood of the point D in the form of a semicircle of radius R, then 

cp(w) = 0(R-“‘) as R + 0. It can be shown that the energy flux across the circumference of this 
semicircle as R + 0 is of order unity and does not depend on R. The energy flux across the 
other part of the boundary of the semicircle, corresponding to parts of the impermeable 
boundary and the boundary of the cavity, is of order R”* and vanishes as R + 0. Hence the 
function q(w) is associated with an energy source situated at the point D. If C > 0, then there is 
energy absorption at the point D, and the velocity of the cavity boundary near D is unbounded 
and directed into the side of the wedge face. If however C ~0, then there is energy production 
and an unbounded negative pressure acts at the edge of the wedge near D. Hence one must put 
C = 0 and drop the term v(w) in (2.5). 

The constant U, can be determined from the condition that V(w) decreases fairly rapidly as 
w + =. A series expansion of the right-hand side of (2.5) in powers of l/w and equating the 
coefficient of l/w to zero gives the following relation for 2), 
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The constant u, should be found from Eq. (2.3). The left-hand side of this equation, i.e. the 
function F(h), has the property 

This is because the functions 
fairly rapidly at infinity, so that 

Hence, (2.6) follows from this and from conditions (2.1). 

F(1) = 0 (2.6) 

V(w), z(w) are analytic in the half-plane Imw > 0 and V(w) decreases 

7 V(u)z’(u)du = 0 
-ca 

3. We will consider the conditions for the various forms of fluid motion to exist. The type of 
motion with a cavity is called regime 1, and the type of motion where the left face of the wedge 
is unwetted is called regime 2. 

Non-separated motion obviously corresponds to the case u, = u,. Putting u, = u, in (2.5) and 
requiring that the complex velocity V(w) decreases more rapidly than l/w at infinity, we obtain 
the relation 

(3.1) 

which is the condition for non-separated fluid motion. Thus non-separated motion can only 
occur when there is a definite relation between the angles p, a,, a,. 

The case u, = 1 corresponds to regime 2. Using relation (2.6) we conclude that u, = 1 when 
p0 ~0 is not a root of Eq. (2.3), regime 2 is impossible, and both faces of the wedge are wetted 
by the fluid for all values of the parameters, even in the case of a plate when a = 0. It can be 
shown that for p,, >O Eq. (2.3) has a root u,, < 1 for all 6~ (-l/2, l/2), y E[-1, y,(6)), i.e. only 
two types of motion exist: non-separated flow if relation (3.1) is satisfied, or regime 1. 

If p,, = 0, then u, = 1 is a root of Eq. (2.3) and regime 2 is possible. In a small neighbourhood 
of the point u, = 1, we can use (2.6) to represent (2.3) in the form 

C(&a,,a,)G@)& = O(E~) (3.2) 

A(6) = -;‘q(u)d+ + t2)’ - r28]dt 
-1 0 

B(6) = 1 q(u)du](l- t2)‘dt, q(u) = &% (1 - u)-““(1 +u)-’ 
-2s 0 

The equality C( 6, a,, a,) = 0 is a necessary condition for the existence of the root u, < 1 of 
Eq. (3.2). from which it follows that 

y = a2 / a1 = ~~(8) = -A@) / B(6) (3.3) 

Relation (3.3) connecting y and 6 is the condition for the transition from regime 1 to 
regime 2. 
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In Fig. 3 curves 1 and 2 were computed from formulae (3.1) and (3.3), respectively, for the 
case p,, = 0 and plotted in the (6, r) plane, where r = r/(1 + y) = a, /a. The points on curve 1 
refer to non-separated fluid flow, the points in the plane lying between curves 1 and 2 
correspond to regime 1, and the points lying below curve 2 correspond to regime 2. The 
dashed curves 3-6 connect points in the plane between (-l/2, 1) and (l/2, 0). These are the 
curves Z(6, I?) = Z,, = const along which the size of the cavity is constant and equal to &. Curves 
3-6 correspond to the values Z,, = 0.01,0.5,0.99,0.999. 

The velocity u and pressure p have singularities at points A, C and B (Fig. 1). We denote by 

R the distances from these points. As R + 0 we have: for non-separated flow at the apex of the 
wedge V, p - lnR, and for regimes 1 and 2 II, p -R-l’*. At points A and B we have II - R8’1’2-s, 
2) - R-s’c1’2+a) respectively, and p = 0. At point D the velocity and pressure are continuous. 

4. We introduce a new dimensionless velocity ula, and pressure p/a,, and retain the previous 
notation. Then in the case of regime 1 the problem under consideration depends on the three parameters 
6, ‘y, p,,, and in the other cases only on the single parameter 6. 

-Q5 0 d Qb 

Fig. 3. Fig. 4. 

Fig. 5. 
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Fig. 6. 

0 d 95 

Fig. 7 

Figure 4 shows the results of calculations of l(6) for y, = 0 and y = 4.1, 4.01, 0.01, 0.1. 0.4, 1 (curves 
l-6 respectively). When y > 0 the function 1(g) decreases monotonically as 6 increases and then. 

increasing, again reaches the value 1. For all y > 0 there is always a value of 6 for which the fluid motion is 
non-separated, whereas for all y < 0 and 6 the flow separates from a side of the wedge. 

Figure 5 shows the dependence of the size of the cavity 1 formed at the left side of the plate on the 

pressure p0 and the parameters 6 and y. 
The curves on the left side of Fig. 5 are for 6 = 0.25. 

Figure 6 shows the dependence of I(y), the force F,(y) acting on the right face of the wedge, and the 

force F,(y) acting on the left face of the wedge, on y when 6=0.2. The continuous curves correspond to 

he pressure p0 =O, and the dashed lines to -p,, =l. When y=yr the motion is non-separated. if 

-1 =Z y < y2, p,, = 0, then the left face is not wetted by the fluid. 
Figure 7 shows the forces F,(g) acting on the right side of the plate, the left side of which is not wetted 

by the fluid (pO = 0) and the forces G,(6), G,(F) in the case of non-separated motion. These forces G, and 
G, differ from F, and F, because they are normalized not on a,, as was previously pointed out, but on 

a=a,+a,. 
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